Appelquist.gxd 11/17/01 1:52 PM Page 1 $

Chapter 1

Why XMIL?

In which it is revealed where my personal
experience of markup languages began.

In this chapter, I take you through some of my initial experiences with
markup languages, experiences that led me to be such an advocate of informa-
tion standards in general and markup languages in particular. We discuss a
simple example of the power of markup, and throughout the chapter, I cover
some basic definitions and concepts.

The Lesson of SGML

In early 1995, I helped start a company, E-Doc, with a subversive business
plan based on the premise that big publishing companies (in this case, in the
scientific-technical-medical arena) might want to publish on the World Wide
Web. I say “subversive” because at the time it was just that—the very compa-
nies we were targeting with our services were the old guard of the publishing
world, and they had every reason in the world to suppress and reject these
new technologies. A revolution was already occurring, especially in the world

—p—

Appelquist.gxd 11/17/01 1:52 PM Page 2 $

2 XML and SQL: Developing Web Applications

of scientific publishing. Through the Internet, scientists were beginning to
share papers with other scientists. While the publishing companies weren't
embracing this new medium, the scientists themselves were, and in the
process they were bypassing traditional journal publication entirely and
threatening decades of entrenched academic practice. Remember, the Internet
wasn’t seen as a viable commercial medium back then; it was largely used by
academics, although we were starting to hear about the so-called “information
superhighway.” Despite the assurance of all my friends that I was off my
rocker, I left my secure career in the client/server software industry to follow
my nose into the unknown. In my two years at E-Doc, I learned a great deal
about technology, media, business, and the publishing industry, but one les-
son that stands out is the power of SGML.

An international standard since 1986, SGML (Standard Generalized Markup
Language) is the foundation on which modern markup languages (such as
HTML or Hypertext Markup Language, the language of the Web) are based.
SGML defines a structure through which markup languages can be built.
HTML is a flavor of SGML, but it is only one markup language (and not even
a particularly complex one) that derives from SGML. Since its inception,
SGML has been in use in publishing, as well as in industry and governments
throughout the world.

Because many of the companies we were dealing with at E-Doc had been
using flavors of SGML to encode material such as books and journal articles
since the late 1980s, they had developed vast storehouses of SGML data that
was just waiting for the Internet revolution. Setting up full-text Web pub-
lishing systems became a matter of simply translating these already existing
SGML files. It's not that the decision makers at these companies were so
forward-thinking that they knew a global network that would redefine the
way we think about information would soon develop. The lesson of SGML
was precisely that these decision makers did not know what the future
would hold. Using SGML “future-proofed” their data so that when the Web
came around, they could easily repurpose it for their changing needs.

It's been a wild ride over the past six years, but as we begin a new century and
a new millennium, that idea of future-proofing data seems more potent and
relevant than ever. The publishing industry will continue to transform and
accelerate into new areas, new platforms, and new paradigms. As technology

o

Appelquist.gxd 11/17/01 1:52 PM Page 3 $

Why XML? 3

professionals, we have to start thinking about future-proofing now, while
we're still at the beginning of this revolution.

What About XML?

So what do SGML and the Internet revolution have to do with XML? Let me
tell you a secret: XML is just SGML wearing a funny hat; XML is SGML with
a sexy name. In other words, XML is an evolution of SGML. The problem
with SGML is that it takes an information management professional to
understand it. XML represents an attempt to simplify SGML to a level where
it can be used widely. The result is a simplified version of SGML that con-
tains all the pieces of SGML that people were using anyway. Therefore, XML
can help anyone future-proof content against future uses, whatever those
might be.

That's power, baby!

Why HTML Is Not the Answer

I hear you saying to yourself, “Ah, Dan, but what about HTML? I can use
HTML for managing information, and I get Web publishing for free (because
HTML is the language of the Web). Isn't HTML also derived from SGML, and
isn't it also a great, standardized way of storing documents?” Well, yes on one,
no on two. HTML is wonderful, but for all its beauty, HTML is really good
only at describing layout—it’s a display-oriented markup. Using HTML, you
can make a word bold or italic, but as to the reason that word might be bold
or italicc HTML remains mute. With XML, because you define the markup you
want to use in your documents, you can mark a certain word as a person’s
name or the title of a book. When the document is represented, the word will
appear bold or italic; but with XML, because your documents know all the
locations of people’s names or book titles, you can capriciously decide that
you want to underline book titles across the board. You have to make this
change only once, wherever your XML documents are being represented. And
that's just the beginning. Your documents are magically transformed from a
bunch of relatively dumb HTML files to documents with intelligence, docu-
ments with muscle.

Appelquist.gxd 11/17/01 1:52 PM Page 4 $

4 XML and SQL: Developing Web Applications

If I hadn’t already learned this lesson, I learned it again when migrating
TheStreet.com (the online financial news service that I referred to in the Intro-
duction) from a relatively dumb HTML-based publishing system to a rela-
tively smart XML-based content management system. When I joined
TheStreet.com, it had been running for over two years with archived content
(articles) that needed to be migrated to the new system. This mass of content
was stored only as HTML files on disk. A certain company (which shall
remain nameless) had built the old system, apparently assuming that no one
would ever have to do anything with this data in the future besides spit it out
in exactly the same format. With a lot of Perl (then the lingua franca of pro-
gramming languages for the Web and an excellent tool for writing data trans-
lation scripts) and one developer’s hard-working and largely unrecognized
efforts over the course of six months, we managed to get most of it converted
to XML. Would it have been easier to start with a content management system
built from the ground up for repurposing content? Undoubtedly!

If this tale doesn’t motivate you sufficiently, consider the problem of the wire-
less applications market. Currently, wireless devices (such as mobile phones,
Research In Motion's Blackberry pager, and the Palm VII wireless personal dig-
ital assistant) are springing up all over, and content providers are hot to trot
out their content onto these devices. Each of these devices implements differ-
ent markup languages. Many wireless devices use WML (Wireless Markup Lan-
guage, the markup language component of WAP, Wireless Application
Protocol), which is built on top of XML. Any content providers who are
already working with XML are uniquely positioned to get their content onto
these devices. Anyone who isn't is going to be left holding the bag.

So HTML or WML or whatever you like becomes an output format (the
display-oriented markup) for our XML documents. In building a Web publish-
ing system, display-oriented markup happens at the representation stage, the
very last stage. When our XML document is represented, it is represented in
HTML (either on the fly or in a batch mode). Thus HTML is a “representa-
tion” of the root XML document. Just as a music CD or tape is a representa-
tion of a master recording made with much more high-fidelity equipment, the
display-oriented markup (HTML, WML, or whatever) is a representation for
use by a consumer. As a consumer, you probably don’t have an 18-track digi-
tal recording deck in your living room (or pocket). The CD or tape (or MP3
audio file, for that matter) is a representation of the original recording for you

o

Appelquist.gxd 11/17/01 1:52 PM Page 5 :F

Why XML? 5

to take with you. But the music publisher retains the original master recording
so that when a new medium comes out (like Super Audio CD, for instance),
the publisher can convert the high-quality master to this new format. In the
case of XML, you retain your XML data forever in your database, but what you
send to consumers is markup specific to their current needs.

The Basics of XML

If you know HTML already, then you're familiar with the idea of tagging con-
tent. Tags are interspersed with data to represent “metadata” or data about the
data. Let’s start with the following sentence:

Homer's Odyssey is a revered relic of the ancient world.

Imagine you never heard of the Odyssey or Homer. I'll reprint the sentence like
this:

Homer’s Odyssey is a revered relic of the ancient world.

I've added metadata that adds meaning to the sentence. Just by adding one
underline, I've loaded the sentence with extra meaning. In HTML, this sen-
tence would be marked up like this:

Homer's <u>Odyssey</u> is a revered relic of the ancient world.

This markup indicates that the word “Odyssey” is to appear underlined. As
described in the last section, HTML is really good only at describing layout—a
display-oriented markup. If you're interested only in how users are viewing
your sentences, that's great. However, if you want to give your documents part
of a system, so that they can be managed intelligently and the content within
them can be searched, sorted, filed, and repurposed to meet your business
needs, you need to know more about them. A human can read the sentence
and logically infer that the word “Odyssey” is a book title because of the
underline. The sentence contains metadata (that is, the underline), but it’s
ambiguous to a computer and decodable only by the human reader. Why?
Because computers are stupid! If you want a computer to know that “Odyssey”

o

Appelquist.gxd 11/17/01 1:52 PM Page 6 :F

6 XML and SQL: Developing Web Applications

is a book title, you have to be much more explicit; this is where XML comes
in. XML markup for the preceding sentence might be the following:

Homer's <book>0dyssey</book> is a revered relic of the ancient world.

Aha! Now we're getting somewhere. The document is marked up using a new
tag, <book>, which I've made up just for this application, to indicate where
book titles are referenced. This provides two important and powerful tools:
You can centrally control the style of your documents, and you have machine-
readable metadata—that is, a computer can easily examine your document
and tell you where the references to book titles are. You can then choose to
style the occurrences of book titles however you want—with underlines, in
italics, in bold, with quotes around them, in a different color, whatever.

Let’s say you want every book title you mention to be a hyperlink to a page
that enables you to buy the book. The HTML markup would look something
like this:

Homer's <u><a href="http://some.store.com/buybook.cgi?ISBN=0987-

2343">0dyssey</u> is a revered relic of the ancient world.

In this example, you've hard-coded the document with a specific Uniform
Resource Locator (URL) to a script on some online bookstore somewhere.
What if that bookstore goes out of business? What if you make a strategic
partnership with some other online bookstore and you want to change all the
book titles to point to that store’s pages? Then you've got to go through all of
your documents with some kind of half-baked Perl script. What if your docu-
ments aren’t all coded consistently? There are about a hundred things that can
and will go wrong in this scenario. Believe me—I've been there.

Let’s look at XML markup of the same sentence:

Homer's <book isbn="0987-2343">0dyssey</book> is a revered relic of the

ancient world.

Now isn’t that a breath of fresh air? By replacing the hard-coded script refer-
ence with a simple indication of ISBN (International Standard Book Number,

Appelquist.gxd 11/17/01 1:52 PM Page 7 $

Why XML? 7

a guaranteed unique number for every book printed'), you've cut the com-
plexity of markup in half. In addition, you have enabled centralized control
over whether book titles should be links and, if so, where they link. Assuming
central control of how XML documents are turned into display-oriented
markup, you can make a change in this one place to effect the display of many
documents. As a special bonus, if you store all your XML documents in a data-
base and properly decompose, or extract, the information within them (as we'll
discuss next), you can also find out which book titles are referred to from
which documents.

Why You Don’t Need to Throw Away Your RDBMS

People often come up to me on the street and say, “Tell me, Dan, if I decide to
build XML-based systems, what happens to my relational database?” A com-
mon misconception is that XML, as a new way of thinking about and repre-
senting data, means an end to the relational database management system
(RDBMS) as we know it. Well, don’t throw away your relational database just
yet. XML is a way to format and bring order to data. By mating the power of
XML with the immense and already well-understood power of SQL-based
relational database systems, you get the best of both worlds. In the following
chapters, I'll discuss some approaches to building this bridge between XML
and your good old relational database.

Relational databases are great at some things (such as maintaining data
integrity and storing highly structured data), while XML is great at other
things (for example, formatting data for transmission, representing unstruc-
tured data, and ordering data). Using both XML and SQL (Structured Query
Language) together enables you to use the best parts of both systems to create
robust, data-centric systems. Together, XML and relational databases help you
answer the fundamental question of content management and of data-ori-
ented systems in general. That question is “What do I have?” Once you know
what you have, you can do anything. If you don’t know what you have, you

11 realize that Homer's Odyssey has been reprinted thousands of times in many languages by
different publishers and that all of the modern reprintings have their own ISBNs. This is simply
an example.

Appelquist.gxd 11/17/01 1:52 PM Page 8 :F

8 XML and SQL: Developing Web Applications

essentially don’t have anything. You'll see this question restated throughout
this book in different ways.

A Brief Example

For convenience, let’s say that I want to keep track of books by ISBN. ISBN's
are convenient because they provide a unique numbering scheme for books.
Let's take the previous example of the book references marked up by ISBN:

<document id="1">Homer's <book isbn="0987-2343">0dyssey</book> is a revered

relic of the ancient world.</document>

I've added <document id="1">and </document> tags around the body of my
document so each document can uniquely identify itself. Each XML docu-
ment I write has an ID number, which I've designated should be in a tag
named “document” that wraps around the entire document. Again, remember
that I'm just making these tags up. They're not a documented standard; they're
just being used for the purpose of these examples.

For easy reference, I want to keep track of which ISBN numbers, are referred to
from which documents; thus I design an SQL table to look something like this:

doc_id ISBN
1 0987-2343
2 0872-8237

doc_id has referential integrity to a list of valid document ID numbers, and
the isbn field has referential integrity to a list of valid ISBN numbers. “Great,”
I hear you saying, “this is a lot of complexity for a bunch of stupid book
names. Explain to me why this is better than using HTML again.”

Suppose I have a thousand documents (book reviews, articles, bulletin board
messages, and so on), and I want to determine which of them refer to a spe-

Appelquist.gxd 11/17/01 1:52 PM Page 9 :F

Why XML? 9

cific book. In the HTML universe, I can perform a textual search for occur-
rences of the book name. But what if [have documents that refer to Homer'’s
Odyssey and Arthur C. Clark’s 2001: A Space Odyssey? 1f 1 search for the word
“odyssey,” my search results list both books. However, if I've marked up all my
references to books by ISBN and I've decomposed or extracted this informa-
tion into a table in a database, I can use a simple SQL query to get the informa-
tion I need quickly and reliably:

select doc_id from doc_isbn where isbn = '0987-2343"'

The search results are a set of document ID numbers. I can choose to display
the title of each document as a hyperlink, clickable to the actual document, or
I can concatenate the documents and display them to the user one after
another on a page—whatever the requirements of my application. By combin-
ing the power of XML machine-readable metadata with the simplicity and
power of my relational database, I've created a powerful document retrieval
tool that can answer the question, “What do I have?” Creating such a tool
simply required a little forethought and designing skill.

If I'm going too fast for you, don’t worry. I discuss these topics in detail in the
following chapters.

Great! How Do | Get Started?

The four essential steps to building an XML-based system or application are
the following:

1. Requirements gathering (described in Chapter 3)

2. Abstract data modeling (Chapter 4)

3. Application design, including DTD (document type definition) and
schema design (Chapters 5 and 6)

4. Implementation (Chapters 8 and 9)

If you follow this plan, you won’t write one line of application code until step
4. Building an XML-based application is writing software and requires the
same rigorous approach.

Appelquist.gxd 11/17/01 1:52 PM Page 10 $

10 XML and SQL: Developing Web Applications

The four steps don’t mention platform at all. Are we implementing on UNIX
or Windows NT? Oracle or MySql? Java or Perl? XML and database design free
you from platform-dependent approaches to data storage and manipulation,
so take advantage of that freedom, and don’t even choose a platform until at
least midway through step 2. Base that platform decision on what features it
includes to get you closer to your goal—built-in features that fit into your
business requirements—how easy the platform is to support ongoing opera-
tions (operational considerations).

You can incorporate the same methodology when integrating XML into an
existing RDBMS-based application. Throughout the following chapters, we'll
examine how to build an XML-based application. You'll learn how to collect
your requirements, build an abstract data model around these requirements,
and then build an XML DTD and a relational schema around this data model.
We'll get into implementation only in the abstract, describing how your sys-
tem must interact with the DTD and schema.

Summary

If I've done my job, you're excited about the raw potential of XML now. You've
seen how it can work to turn dumb documents into smart documents—docu-
ments with oomph. You should understand where some of my passion for
these systems comes from. I've seen them work and work well. In the next
chapter, we'll step back into the history of both XML and the relational data-
base to provide a bit more context before moving forward with application
design and development.

